Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Tao Fan, Markus Schürmann, Hans Preut* and Norbert Krause

Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany

Correspondence e-mail: uch002@uxp1.hrz.uni-dortmund.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.012 Å R factor = 0.067 wR factor = 0.182 Data-to-parameter ratio = 8.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(2*S*,3*R*,4*R*,5*R*)-2-(*tert*-Butyldimethylsilyloxymethyl)-2,4,5-trimethyltetrahydrofuran-3,4-diol

In the title compound, $C_{14}H_{30}O_4Si$, the bond angles around Si are in the range 105.4 (3)–112.1 (4)° and the tetrahydrofuran ring adopts a distorted envelope conformation. There is one intramolecular and one intermolecular $O-H\cdots O$ hydrogen bond in the crystal structure. A spiral of molecules forms around the 4₁ axis (*c* axis) of the crystal structure *via* the intermolecular $O-H\cdots O$ hydrogen bond.

Received 17 May 2005 Accepted 26 May 2005 Online 10 June 2005

Comment

The title compound, (I), is an intermediate in the enantioselective synthesis of the natural products citreoviral and citreoviridin. The compound was obtained in a multistep sequence involving a gold-catalysed cycloisomerization (Hoffmann-Röder & Krause, 2001). The crystal structure proves the relative configuration of the four stereogenic centres within the tetrahydrofuran (THF) ring. The fivemembered ring has the shape of a slightly distorted envelope with the torsion angles 31.8 (8), -44.5 (7), 40.3 (8), -18.9 (8) and -9.6 (8)°.

Experimental

The synthesis of (I) will be described elsewhere (Fan & Krause, 2005). It was dissolved in a small amount of THF and hexane, and crystals were obtained by vapour diffusion of hexane.

Figure 1

The molecular structure of the title compound, showing the labelling of all non-H atoms and of the H atoms involved in $O-H \cdots O$ hydrogen bonds. The remaining H atoms have been omitted for clarity. The dashed line indicates the intramolecular hydrogen bond. Displacement ellipsoids are shown at the 30% probability level.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

C ₁₄ H ₃₀ O ₄ Si $M_r = 290.47$ Tetragonal, P4 ₁ a = 12.3616 (12) Å c = 11.1685 (11) Å V = 1706.6 (3) Å ³ Z = 4 $D_x = 1.130 \text{ Mg m}^{-3}$	Mo $K\alpha$ radiation Cell parameters from 20589 reflections $\theta = 3.0-25.4^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$ T = 173 (1) K Needle, colourless $0.36 \times 0.08 \times 0.08 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer ω scans Absorption correction: none 20589 measured reflections 1607 independent reflections 1227 reflections with $I > 2\sigma(I)$	$\begin{split} R_{\rm int} &= 0.049 \\ \theta_{\rm max} &= 25.4^{\circ} \\ h &= -14 \to 14 \\ k &= -10 \to 10 \\ l &= -13 \to 13 \end{split}$
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.182$ S = 1.15 1607 reflections 182 parameters H-atom parameters constrained	$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^{\ 2}) + (0.0495P)^2 \\ &+ 4.0462P] \\ &\text{where } P = (F_{\rm o}^{\ 2} + 2F_{\rm c}^{\ 2})/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O2 - H2 \cdots O3^{i} \\ O3 - H3 \cdots O4 \end{array}$	0.82	2.02	2.834 (7)	170
	0.82	1.97	2.750 (8)	158

Symmetry code: (i) $-y + 1, x, z + \frac{1}{4}$.

In the absence of significant anomalous scattering effects, Friedel pairs were merged. H atoms were placed in calculated positions, with C-H = 0.96–0.98 Å and O-H = 0.82 Å, and were refined as riding, with $U_{\rm iso}({\rm H})$ values of $1.5U_{\rm eq}({\rm C},{\rm O})$ for methyl and hydroxy groups, and $1.2U_{\rm eq}({\rm C})$ for others; the methyl and hydroxy groups were allowed to rotate but not to tip.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1991); software used to prepare material for publication: *SHELXL97*, *PARST95* (Nardelli, 1995) and *PLATON* (Spek, 2003).

References

- Fan, H.-T. & Krause, N. (2005). Org. Lett. In preparation.
- Hoffmann-Röder, A. & Krause, N. (2001). Org. Lett. 3, 2537-2538.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326, New York: Academic Press.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.